
Chapter 71

Imitation Learning2

Reading
1. The DAGGER algorithm

(https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-
NoRegret.pdf)

2. https://www.youtube.com/watch?v=TUBBIgtQL_k

3. An Algorithmic Perspective on Imitation Learning
(https://arxiv.org/pdf/1811.06711.pdf)

This is the beginning of Module 3 of the course. The previous two modules3

have been about how to to estimate the state of the world around the robot4

(Module 1) and how to move the robot (or the world) to a desired state (Module5

2). Both of these required that we maintain a model of the dynamics of the6

robot; this model may be inaccurate and we fudged over this inaccuracy by7

modeling the remainder as “noise” in Markov Decision Processes.8

The next few lectures introduce different aspects of what is called Rein-9

forcement Learning (RL). This is a very large field and you can think of using10

techniques from RL in many different ways.11

1. Dynamic programming with function approximation. If we are12

solving a dynamic programming problem, we can think of writing down13

the optimal cost-to-go J∗(x, t) as a function of some parameters, e.g.,14

the cost-to-go is15

Jφ(x, t) =
1

2
x(t)

⊤
(

some function of A,B,Q,R
)

︸ ︷︷ ︸
function of φ

x(t)

for LQR. We know the stuff inside the brackets to be exactly P (t) but,16

if we did not, it could be written down as some generic function of17

parameters φ. We know that any cost-to-go that satisfies the Bellman18

1

https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf
https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf
https://www.youtube.com/watch?v=TUBBIgtQL_k
https://arxiv.org/pdf/1811.06711.pdf

2

equation is the optimal cost-to-go, so we can now “fit” the candidate19

function Jφ(x, t) to satisfy the Bellman equation. Similarly, one may20

also express the optimal feedback control u(·) using some parameters θ21

as22

uθ(·).

We will see how to fit such functions in this chapter.23

2. Learning from data. It may happen that we do not know very much24

about the dynamical system, e.g., we do not know a good model for what25

drives customers as they buy items in an online merchandise platform,26

or a robot traveling in a crowded area may not have a good model for27

how large crowds of people walk around it. One may collect data from28

these systems fit some model of the form ẋ = f(x, u) to the data and29

then go back to the techniques of Module 2. It is typically not clear30

how much data one should collect. RL gives a suite of techniques to31

learn the cost-to-go in these situations by collecting and assimilating the32

data automatically. These techniques go under the umbrella of policy33

gradients, on-policy methods etc. One may also simply “memorize” the34

data provided by an expert operator, this is called Imitation Learning35

and we will discuss it next.36

Some motivation Imitation Learning is also called “learning from demon-37

strations”. This is in fact one of the earliest successful examples of using a38

neural network for driving. The ALVINN project at CMU by Dean Pomerleau39

in 1988 (https://www.youtube.com/watch?v=2KMAAmkz9go) used a two-40

layer neural network with 5 hidden neurons, about 1000 inputs from the pixels41

of a camera and 30 outputs. It successfully drove in different parts of the United42

States and Germany. Imitation learning has also been responsible for numerous43

other early-successes of RL, e.g., acrobatic maneuvers on an RC helicopter44

(http://ai.stanford.edu/ acoates/papers/AbbeelCoatesNg_IJRR2010.pdf).45

Imitation Learning seeks to record data from experts, e.g., humans,
and reproduce these desired behaviors on robots. The key questions we
should ask, and which we will answer in this chapter, are as follows.

1. Who should demonstrate (experts, amateurs, or novices) and how
should we record data (what states, controls etc.)?

2. How should we learn from this data? e.g., fit a supervised regression
model for the policy. How should one ignore bad behaviors in non-
expert data?

3. And most importantly, what can we do if the robot encounters a
situation which was not in the dataset.

https://www.youtube.com/watch?v=2KMAAmkz9go
http://ai.stanford.edu/~acoates/papers/AbbeelCoatesNg_IJRR2010.pdf

3

7.1 A crash course in supervised learning46

Nature gives us data X and targets Y for this data.47

X → Y.

Nature does not usually tell us what property of a datum x ∈ X results in a48

particular prediction y ∈ Y . We would like to learn to imitate Nature, namely49

predict y given x.50

What does such learning mean? It is simply a notion of being able to51

identify patterns in the input data without explicitly programming a computer52

for prediction. We are often happy with a learning process that identifies53

correlations: if we learn correlations on a few samples (x1, y1), . . . , (xn, yn),54

we may be able to predict the output for a new datum xn+1. We may not need55

to know why the label of xn+1 was predicted to be so and so.56

Let us say that Nature possesses a probability distribution P over (X,Y).57

We will formalize the problem of machine learning as Nature drawing n58

independent and identically distributed samples from this distribution. This is59

denoted by60

Dtrain =
{
(xi, yi) ∼ P

}n

i=1

is called the “training set”. We use this data to identify patterns that help make61

predictions on some future data.62

What is the task in machine learning? Suppose Dtrain consists of n = 5063

RGB images of size 100×100 of two kinds, ones with an orange inside them64

and ones without. 104 is a large number of pixels, each pixel taking any of the65

possible 2553 values. Suppose we discover that one particular pixel, say at66

location (25, 45), takes distinct values in all images inside our training set. We67

can then construct a predictor based on this pixel. This predictor, it is a binary68

classifier, ? How many such binary classifiers
are there at most?

perfectly maps the training images to their labels (orange: +1 or no69

orange: -1). If xk
ij is the (ij)th pixel for image xk, then we use the function70

f(x) =

{
yk if xk

ij = xij for some k = 1, . . . , n

−1 otherwise.

This predictor certainly solves the task. It correctly works for all images in the71

training set. Does it work for images outside the training set?72

Our task in machine learning is to learn a predictor that works outside the73

training set. The training set is only a source of information that Nature gives74

us to find such a predictor.75

Designing a predictor that is accurate on Dtrain is trivial. A hash
function that memorizes the data is sufficient. This is NOT our task in
machine learning. We want predictors that generalize to new data outside
Dtrain.

4

Generalization If we never see data from outside Dtrain why should we hope76

to do well on it? The key is the distribution P . Machine learning is formalized77

as constructing a predictor that works well on new data that is also drawn78

independently from the distribution P . We will call this set of data the “test79

set”80

Dtest

and it is constructed similarly. This assumption is important. It provides81

coherence between past and future samples: past samples that were used to82

train and future samples that we will wish to predict upon. How to find such83

predictors that work well on new data? The central idea in machine learning is84

to restrict the set of possible binary functions that we consider.85

We are searching for a predictor that generalizes well but only have
the training data to select predictors.

The right class of functions f cannot be too large, otherwise we will find86

our binary classifier above as the solution, and that is not very useful. The class87

of functions cannot be too small either, otherwise we won’t be able to predict88

difficult images. If the predictor does not even work well on the training set,89

there is no reason why we should expect it to work on the test set.90

Finding this correct class of functions with the right balance is what
machine learning is all about.

? Can you now think how is
machine learning different from
other fields you might know such as
statistics or optimization?

7.1.1 Fitting a machine learning model91

Let us now solve a classification problem. We will again go around the model92

selection problem and consider the class of linear classifiers. Assume binary93

labels Y ∈ {−1, 1}. To keep the notation clear, we will use the trick of94

appending a 1 to the data x and hide the bias term b in the linear classifier. The95

predictor is now given by96

f(x;w) = sign(w⊤x)

=

{
+1 if w⊤x ≥ 0

−1 else.

(7.1)

We have used the sign function denoted as sign to get binary {−1,+1} outputs97

form our real-valued prediction w⊤x. This is the famous perceptron model of98

Frank Rosenblatt.99

We want the predictions of the model to match those in the training data100

and devise an objective to to fit/train the perceptron.101

ℓzero-one(w) :=
1

n

n∑
i=1

1{yi ̸=f(xi;w)}. (7.2)

5

The indicator function inside the summation measures the number of mistakes102

the perceptron makes on the training dataset. The objective here is designed to103

find weights w that minimizes the average number of mistakes, also known as104

the training error. Such a loss that measures the mistakes is called the zero-one105

loss, it incurs a penalty of 1 for a mistake and zero otherwise.106
? Can you think of some quantity
other than the zero-one error that we
may wish to optimize?

Surrogate losses The zero-one loss is the clearest indication of whether the107

perceptron is working well. It is however non-differentiable, so we cannot use108

powerful ideas from optimization theory to minimize it. This is why surrogate109

losses are constructed in machine learning. These are proxies for the loss110

function, typically for the classification problems and look as follows. The111

exponential loss is112

ℓexp(w) = e−y (w⊤x)

or the logistic loss is113

ℓlogistic(w) = log
(
1 + e−yw⊤x

)
.

Stochastic Gradient Descent (SGD) SGD is a very general algorithm to114

optimize objectives typically found in machine learning. We can use it so115

long as we have a dataset and an objective that is differentiable. Consider an116

optimization problem where we want to solve for117

w∗ = argmin
w

1

n

n∑
i=1

ℓi(w)

where the function ℓi denotes the loss on the sample (xi, yi) and w ∈ Rp
118

denotes the weights of the classifier. Solving this problem using SGD corre-119

sponds to iteratively updating the weights using120

wt+1 = wt − η
dℓωt(w)

dw

∣∣∣
w=wt

,

i.e., we compute the gradient one sample with index ωt in the dataset. The121

index ωt is chosen uniformly randomly from122

ωt ∈ {1, . . . , n} .

In practice, at each time-step t, we typically select a few (not just one) input123

data ωt from the training dataset and average the gradient dℓωt (w)
dw

∣∣∣
w=wt

across124

them; this is known as a “mini-batch”. The gradient of the loss ℓωt(w) with125

respect to w is denoted by126

∇ ℓωt(wt) :=
dℓωt(w)

dw

∣∣∣
w=wt

=


∇w1 ℓ

ωt(wt)

∇w2 ℓ
ωt(wt)
...

∇wp
ℓωt(wt)

 ∈ Rp.

6

The gradient ∇ ℓωt(wt) is therefore a vector in Rp. We have written127

∇w1
ℓωt(wt) =

dℓωt(w)

dw1

∣∣∣
w=wt

for the scalar-valued derivative of the objective ℓωt(wt) with respect to the128

first weight w1 ∈ R. We can therefore write SGD as129

wt+1 = wt − η∇ ℓωt(wt). (7.3)

The non-negative scalar η ∈ R+ is called the step-size or the learning rate. It130

governs the distance traveled along the negative gradient −∇ ℓωt(wt) at each131

iteration.132

7.1.2 Deep Neural Networks133

The Perceptron in (7.1) is a linear model: it computes a linear function of134

the weights w⊤x and uses this function to make the predictions f(x;w) =135

sign(w⊤x). Linear models try to split the data (say we have binary labels136

Y = {−1, 1}) using a hyper-plane with w denoting the normal to this hyper-137

plane. This does not work for all situations of course, as the figure below138

shows, there is no hyper-plane that cleanly separates the two classes (i.e.,139

achieves zero mis-prediction error) but there is a nonlinear function that can140

do the job.

Figure 7.1

141

A deep neural network is one such nonlinear function. First consider a142

“two-layer” network143

f(x; v, S) = sign
(
v⊤σ

(
S⊤x

))
where the matrix S ∈ Rd×p and a vector v ∈ Rp are the parameters or144

“weights” of the classifier. The “nonlinearity” σ is usually set to be what is145

called a Rectified Linear Unit (ReLU)146

σ(x) := ReLU(x) = |x|+
= max(0, x).

(7.4)

Just like the case of a Perceptron, we can use an objective 1
n

∑n
i=1 ℓ

i(v, S)147

7

that depends on both v, S to fit this classifier on training data. A deep neural148

network takes the idea of a two-layer network to the next step and has multiple149

“layers”, each with a different weight matrix S1, . . . , SL. The classifier is150

therefore given by151

f(x; v, S1, . . . , SL) = sign
(
v⊤σ

(
S⊤
L . . . σ

(
S⊤
2 σ(S⊤

1 x)
)
. . .

))
. (7.5)

We call each operation of the form σ
(
S⊤
k . . .

)
, as a layer. Consider the152

second layer: it takes the features generated by the first layer, namely σ(S⊤
1 x),153

multiplies these features using its feature matrix S⊤
2 and applies a nonlinear154

function σ(·) to this result element-wise before passing it on to the third layer.155

A deep network creates new features by composing older features.

This composition is very powerful. Not only do we not have to pick a156

particular feature vector, we can create very complex features by sequentially157

combining simpler ones. For example Figure 7.2 shows the features (more158

precisely, the kernel) learnt by a deep neural network. The first layer of features159

are called Gabor-like, and incidentally they are similar to the features learned160

by the human brain in the first part of the visual cortex (the one closest to the161

eyes). These features are combined linearly along with a nonlinear operation162

to give richer features (spirals, right angles) in the middle panel. The third163

layer combines the lower features to get even more complex features, these164

look like patterns (notice a soccer ball in the bottom left), a box on the bottom165

right etc.166

Deep networks are universal function approximators The multi-layer167

neural network is a powerful class of classifiers: depending upon how many168

layers we have and what is the dimensionality of the the weight matrices169

Sk at each layer, we can fit any training data. In fact, this statement, which170

is called the universal approximation property holds even for a two-layer171

neural network v⊤σ(S⊤x) if the number of columns in S is big enough. This172

property is the central reason why deep networks are so widely applicable, we173

can model complex machine learning problems if we choose a big enough174

deep network.175

Figure 7.2

8

Logits for multi-class classification. The output176

ŷ = v⊤σ
(
S⊤
L . . . σ

(
S⊤
2 σ(S⊤

1 x)
)
. . .

)
is called the logits corresponding to the different classes. This name comes177

from logistic regression where logits are the log-probabilities of an input datum178

belonging to one of the two classes. A deep network provides an easy way to179

solve a multi-class classification problem, we simply set180

v ∈ Rp×C

where C is the total number of classes in the data. Just like logistic regression181

predicts the logits of the two classes, we would like to interpret the vector ŷ as182

the log-probabilities of an input belonging to one of the classes. ? What would the shape of w be if
you were performing regression
using a deep network?

183

Weights It is customary to not differentiate between the parameters of dif-184

ferent layers of a deep network and simply say weights when we want to refer185

to all parameters. The set186

w := {v, S1, S2, . . . , SL}

is the set of weights. This set is typically stored in PyTorch as a set of matrices,187

one for each layer. Using this new notation, we will write down a deep neural188

network classifier as simply189

f(x,w) (7.6)

and fitting the deep network to a dataset involves the optimization problem190

w∗ = argmin
w

1

n

n∑
i=1

ℓ(yi, ŷi). (7.7)

We will also sometimes denote the loss of the ith sample as191

ℓi(w) := ℓ(yi, ŷi).

Backpropagation The Backpropagation algorithm is a method to compute192

the gradient of the objective while fitting a deep network using SGD, i.e., it193

computes ∇w ℓi(w). For the purposes of this course, the details of how this is194

done are not essential, so we will skip them.195

PyTorch We will use a library called PyTorch (https://pytorch.org) to code196

up deep neural networks for the reinforcement learning part of this course.197

You can find some excellent tutorials for it at198

https://pytorch.org/tutorials/beginner/basics/intro.html. For the purposes of199

this course, you do not need to know the intricacies of PyTorch, we will200

give you enough code to work with deep networks so that you can focus on201

implementing the reinforcement learning-specific parts.202

https://pytorch.org/
https://pytorch.org/tutorials/beginner/basics/intro.html

9

7.2 Behavior Cloning203

With that background, we are ready to tackle what is potentially the simplest204

problem in RL. We will almost exclusively deal with discrete-time systems for205

RL. Let us imagine that we are given access to n trajectories each of length206

T + 1 time-steps from an expert demonstrator for our system. We write this207

as a training dataset208

D =
{
(xi

t, u
i
t)t=0,1,...,T

}
i=1,...,n

At each step, we record the state xi
t ∈ Rd and the control that the expert took209

at that state ui
t. We would like to learn a deterministic feedback control for the210

robot that is parametrized by parameters θ211

uθ(x) : X 7→ U ⊂ Rm.

using the training data. The idea is that if uθ(x
i(t)) ≈ ui(t) for all i and all212

times t, then we can simply run our learned controller uθ(x) on the robot213

instead of having the expert. A simple example is a baby deer learning to214

imitate how its mother in how to run.215

Parameterizing the controller Our function uθ may represent many dif-216

ferent families of controllers. For example, uθ(x) = θx where θ ∈ Rd×p
217

is a linear controller; this is much like the control for LQR except that we218

can fit θ to the expert’s data instead of solving the LQR problem to find the219

Kalman gain. We could also think of some other complicated function, e.g., a220

two-layer neural network,221

uθ(x) = v σ
(
S⊤x

)
where S ∈ Rd×p and v ∈ Rm×p and σ : Rm 7→ Rm is some nonlinearity, say222

ReLU. As we did above, we will use223

θ := (v, S)

to denote all the weights of this two-layer neural network. Multi-layer neural224

networks are also another possible avenue. In general, we want to the parame-225

terization of the controller to be rich enough to fit some complex controller226

that the expert may have used on the system.227

How to fit the controller? Given our chosen model for uθ(x), say a two-228

layer neural network with weights θ, fitting the controller involves finding the229

best value for the parameters θ such that uθ(x
i
t) ≈ ui

t for data in our dataset.230

There are many ways to do this, e.g., we can solve the following optimization231

problem232

θ̂ = argmin
θ

ℓ(θ) :=
1

n

n∑
i=1

1

T + 1

T∑
t=0

∥ui
t − uθ(x

i
t)∥22︸ ︷︷ ︸

ℓi(θ)

(7.8)

10

The difficulty of solving the above problem depends upon how difficult the233

model uθ(x) is, for instance, if the model is linear θ x, we can solve (7.8)234

using ordinary least squares. If the model is a neural network, one would have235

to use SGD to solve the optimization problem above. After fitting this model,236

we have a new controller237

uθ̂(x) ∈ Rm

that we can use anywhere in the domain X ⊂ Rd, even at places where we had238

no expert data. This is known as Behavior Cloning, i.e., cloning the controls239

of the expert into a parametric model.240

Generalization performance of behavior cloning Note that the data pro-241

vided by the expert is not iid, of course the state xi
t+1 in the expert’s trajectory242

depends upon the previous state xi
t. Standard supervised learning makes the243

assumption that Nature gives training data that is independent and identically244

distributed from the distribution P . While it is still reasonable to fit the re-245

gression loss in (7.8) for such correlated data, one should remember that if246

the expert trajectories do not go to all parts of the state-space, the learned247

controller fitted on the training data may not work outside these parts. Of248

course, if we behavior clone the controls taken by a generic driver, they are249

unlikely to be competitive for racing, and vice-versa. It is very important to250

realize that this does not mean that BC does not generalize. Generalization in251

machine learning is a concept that suggests that the model should work well252

on data from the same distribution. What does the the “distribution” of the253

expert mean, in this case, it simply refers to the distribution of the states that254

the expert’s trajectories typically visit, e.g, a race driver typically drives at the255

limits of tire friction and throttle, this is different from a usual city-driver who256

would rather maximize the longevity of their tires and engine-life.257

 Discuss generalization
performance in behavior cloning.

7.2.1 Behavior cloning with a stochastic controller258

In this case, we have always chosen feedback feedback controllers that are259

deterministic, i.e., there is a single value of control u that is taken at the state x.260

Going forward, we will also talk about stochastic controllers, i.e., controllers261

which sample a control from a distribution. There can be a few reasons of262

using such a controller. First, we will see in later lectures how this may help263

in training a reinforcement learning algorithm; this is because in situations264

where you do not know the system dynamics precisely, it helps to “hedge” the265

feedback to take a few different control actions instead of simply the one that266

the value function deems as the maximizing one. This is not very different267

from having a few different stocks in your portfolio. Second, we benefit from268

this hedging even at test-time when we run a stochastic feedback control, e.g.,269

in situations where the limited training data may not want to always pick the270

best control (because the best control was computed using an imprecise model271

of the system dynamics and could be wrong), but rather hedge our bets by272

choosing between a few different controls.273

11

A stochastic feedback control is denoted by274

u ∼ uθ(· | x) = P(· | x)

notice that uθ(· | x) is a probability distribution on the control space U that275

depends on the state x, and in this case the parameters θ. The control taken at a276

state x is a sample drawn from this probability distribution. The deterministic277

controller is a special case of this setup where278

uθ(u| x) = δuθ(x)(u) ≡ uθ(x)

is a Dirac-delta distribution at uθ(x). If the control space U is discrete,279

then uθ(· | x) could be a categorical distribution. If the control space U is280

continuous, then you may wish to think of the controls being sampled from a281

Gaussian distribution with some mean µθ(x) and variance σ2
θ(x)282

Rm ∋ u ∼ uθ(· | x) = N(µθ(x),Σθ(x)).

Maximum likelihood estimation Let’s pick a particular stochastic con-283

troller, say a Gaussian. How should we fit the parameters θ for this? We would284

like to find parameters θ that make the expert’s data in our dataset very likely.285

The log-likelihood of each datum is286

log uθ(u
i
t | xi

t)

and maximizing the log-likelihood of the entire dataset amounts to solving287

θ̂ = argmin
θ

1

n

n∑
i=1

1

T + 1

T∑
t=0

− log uθ(u
i
t | xi

t)︸ ︷︷ ︸
ℓi(θ)

. (7.9)

Fitting BC with a Gaussian controller Notice that if we use a Gaussian288

distribution289

uθ(· | x) = N (µθ(x), I)

as our stochastic controller, the objective in (7.9) is the same as that in (7.8).290

uθ(· | x) = N
(
µθ(x), σ

2
θ(x)I

)
we have that291

− log uθ(u | x) = ∥µθ(x)− u∥22
σ2
θ(x)

+ 2cp log σθ(x).

where c is a constant.292

7.2.2 KL-divergence form of Behavior Cloning293

Background on KL divergence The Kullback-Leibler (KL) divergence is a294

quantity to measure the distance between two probability distributions. There295

are many similar distances, for example, given two probability distributions296

12

p(x) and q(x) supported on a discrete set X , the total variation distance297

between them is298

TV(p, q) =
1

2

∑
x∈X

|p(x)− q(x)| .

Hellinger distance (https://en.wikipedia.org/wiki/Hellinger_distance), f -divergences299

(https://en.wikipedia.org/wiki/F-divergence) and the Wasserstein metric300

(https://en.wikipedia.org/wiki/Wasserstein_metric) are a few other examples301

of ways to measure how different two probability distributions are from each302

other.303

The Kullback-Leibler divergence (KL) between two distributions is given304

by305

KL(p || q) =
∑
x∈X

p(x) log
p(x)

q(x)
. (7.10)

This is a distance and not a metric, i.e., it is always non-zero and zero if and306

only if the two distributions are equal, but the KL-divergence is not symmetric307

(like a metric has to be). Also, the above formula is well-defined only if for all308

x where q(x) = 0, we also have p(x) = 0. Notice that it is not symmetric309

KL(q || p) =
∑
x∈X

q(x) log
q(x)

p(x)
̸= KL(p || q).

The funny notation KL(p || q) was invented by Shun-ichi Amari310

(https://en.wikipedia.org/wiki/Shun%27ichi_Amari) to emphasize the fact that311

the KL-divergence is asymmetric. The KL-divergence is always positive: you312

can show this using an application of Jensen’s inequality. For distributions313

with continuous support, we integrate over the entire space X and define KL314

divergence as315

KL(p || q) =
∫
X

p(x) log
p(x)

q(x)
dx.

Behavior Cloning Let us now imagine the expert is also a parametric316

stochastic feedback controller uθ∗(· | x). Our data is therefore drawn by317

running this controller for n trajectories, T time-steps on the system. This318

dataset now consists of samples from319

puθ∗ (x, u)

which is the joint distribution on the state-space X and the control-space U .320

We have denoted the parameters of the feedback controller which creates this321

distribution as the subscript uθ∗ . Our behavior cloning controller creates a322

similar distribution puθ
(x, u) and the general version of the objective in (7.9)323

is therefore324

θ̂ = argmin
θ

KL (puθ∗ || puθ
) ; (7.11)

The objective in (7.9) corresponds to this for Gaussian stochastic controllers,325

but we can just as easily imagine some other distribution for the stochastic326

controller of the expert and the robot.327

https://en.wikipedia.org/wiki/Hellinger_distance
https://en.wikipedia.org/wiki/F-divergence
https://en.wikipedia.org/wiki/Wasserstein_metric
https://en.wikipedia.org/wiki/Shun%27ichi_Amari

13

Written this way, BC can be understood as finding a controller θ̂

whose distribution on the states and controls is close to the distribution of
states and controls of the expert.

7.2.3 Some remarks on Behavior Cloning328

Worst-case performance Performance of Behavior Cloning can be quite bad329

in the worst case. The authors in “Efficient reductions for imitation learning”330

(https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf)331

show that if the learned controller uθ̂ differs from the control taken by the332

expert controller uθ∗ with a probability ϵ at each time-step, over a horizon of333

length T time-steps, it can be O(T 2ϵ) off from the cost-to-go of the expert as334

averaged over states that the learned controller visits. This is because once the335

robot makes a mistake and goes away from the expert’s part in the state-space,336

future states of the robot and the expert can be very different.

 Draw a picture of the amplifying
errors of running behavior cloning
in real-time.

337

Model-free nature of BC Observe that our learned controller uθ̂(· | x) is a338

feedback controller and works for entire state-space X . We did not need to339

know the dynamics of the system to build this controller. The data from the340

expert is conceptually the same as the model ẋ = f(x, u) of the dynamics,341

and you can learn controllers from both. Do you however notice a catch?342

7.3 DAgger: Dataset Aggregation343

The expert’s dataset in Behavior Cloning determines the quality of the con-344

troller learned. If we collected very few trajectories from the expert, they may345

not cover all parts of the state-space and the behavior cloned controller has no346

data to fit the model in those parts.347

Let us design a simple algorithm, of the same spirit as iterative-LQR, to348

mitigate this. We start with a candidate controller, say uθ(0)(x); one may also349

start with a stochastic controller uθ(0)(· | x) instead.350

DAgger: Let the dataset D(0) be the data collected from the expert.

https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf

14

Initialize uθ(0) = uθ̂ to be the BC controller learned using data D(0). At
iteration k

1. The robot queries the expert for a fraction p of the time-steps and
uses its learned controller uθ(k−1) for the other time-steps. If the
expert corresponds to some controller uθ∗ , then the robot controller
at a state x is

u ∼ p δuθ∗ (x) + (1− p) δu
θ(k−1) (x).

2. Use u(x) to collect a dataset D =
{
(xi

t, u
i
t)t=0,...,T

}
i=1,...,n

with
n trajectories.

3. Set the new dataset to be D(k) = D(k−1) ∪D

4. Fit a controller uθ(k) using behavior cloning to the new dataset
D(k).

The above algorithm iteratively updates the BC controller uθ̂ by drawing351

new data from the expert. The robot first bootstraps off the expert’s data, this352

simply means that it uses the expert’s data to fit its controller uθ(0)(x). As we353

discussed above, this controller may veer off the expert’s trajectory if the robot354

starts at states that are different from the dataset, or even if it takes a slightly355

different control than the expert midway through a trajectory.356

357

To fix this, the robot collects more data at each iteration. It uses a combina-358

tion of the expert and its controller to collect such data. This, allows collecting359

a dataset of expert’s controls in states that the robot visits and iteratively360

expands the dataset D(k).361

15

362

In the beginning we may wish to be close to the expert’s data and use a large363

value of p, as the fitted controller uθk+1
becomes good, we can reduce the364

value of p and rely less on the expert.365

DAgger is an iterative algorithm which expands the controller to handle366

larger and larger parts of the state-space. Therefore, the cost-to-go of the367

controller learned via DAgger is O(T) off from the cost-to-go of the expert as368

averaged over states that the learned controller visits.369

? What criterion can we use to stop
these iterations? We can stop when
the incremental dataset collected Dk

is not that different from the
cumulative dataset D, we know that
the new controllers are not that
different. We can also stop when the
parameters of our learned controller
are θ(k+1) ≈ θ(k).

DAgger with expert annotations at each step DAgger is a conceptual370

framework where the expert is queried repeatedly for new control actions.371

This is obviously problematic because we need to expert on hand at each372

iteration. We can also cook up a slightly version of DAgger where we start373

with the BC controller uθ(k) = uθ̂ and at each step, we run the controller on374

the real system and ask the expert to relabel the data after that run. The dataset375

D(k) collected by the algorithm expands at each iteration and although the376

states xi
t are those visited by our controller, their annotations are those given377

by the expert. This is a much more natural way of implementing DAgger.378

	Imitation Learning
	A crash course in supervised learning
	Fitting a machine learning model
	Deep Neural Networks

	Behavior Cloning
	Behavior cloning with a stochastic controller
	KL-divergence form of Behavior Cloning
	Some remarks on Behavior Cloning

	DAgger: Dataset Aggregation

